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Abstract—The estimation of the quality of the learned models
in Data Mining has been traditionally carried out by means of
a k-fold partition technique. However, the ”random” division of
the instances over the folds may results in a problem known as
covariate shift, i.e. there is a different data distribution between
the training and test folds.

In classification with imbalanced datasets this problem is more
severe. The misclassification of minority class instances due to an
incorrect learning of the real boundaries caused by a not well de-
fined data distribution, truly affects the measures of performance
in this scenario. To avoid this harmful situation, we propose
the use of a specific validation technique for the partitioning
of the data, known as “Distribution optimally balanced stratified
cross-validation”. This methodology makes the decision of placing
close-by samples on different folds, so that each partition will end
up with enough representatives of every region.

In this contribution, we show the goodness of this methodology
using Genetic Fuzzy Systems, as they are known to be robust
approaches for all types of classification problems. Specifically,
we have chosen the FARC-HD algorithm, a novel technique which
has shown to obtain very accurate results. From the experimental
analysis, which is carried out on a wide number of imbalanced
datasets, we emphasize the necessity of using a proper validation
methodology for extracting well founded conclusions.

Index Terms—Imbalanced Datasets, Covariate Shift, Dataset
Shift, Validation Techniques, Partitioning, Genetic Fuzzy Systems

I. INTRODUCTION

Standard learning algorithms are designed under the premise
of a balanced distribution. When dealing with skewed class
distributions, the classification problem becomes more diffi-
cult, specifically for correctly identifying the minority concepts
within the data [1]. This issue is known as the class imbalance
problem [2], [3], in which there is an under-represented class
(positive) and a majority class (negative).

In order to validate the performance of a classifier, strati-
fied cross-validation (SCV) is the most commonly employed
method in the literature. It places an equal number of samples
of each class on each partition to maintain class distributions
equal in all partitions [4]. However, when this process is
carried out in a random way, it may introduce a different
data distribution between the training and test partitions, thus
leading to inaccurate conclusions about the model that has

been learnt from the training data. This issue is known as
dataset shift [5], or more specifically covariate shift [6].

In the presence of imbalance, this problem is even more
critic according to the metrics of performance. Misclassifica-
tions of the positive class instances in the test partition due
to a “random clustering” of the classes, highly decreases the
quality of the classifier, as their weight in the final accuracy
is higher.

A more suitable validation technique needs to be employed
in order to avoid inducing dataset shift issues artificially. In
this paper, we suggest the use of a novel methodology called
“Distribution optimally balanced SCV” (DOB-SCV) [7]. This
method attempts to minimize covariate shift by keeping data
distribution as similar as possible between training and test
folds by maximizing diversity on each fold and trying to keep
all folds as similar as possible to each other. The mechanism of
this approach consists of selecting the k closest neighbors for a
given instance and place them in different folds (with k being
the number of total partitions), so that the data distribution
between the training and test partitions remains as similar as
possible.

Genetic Fuzzy Systems (GFSs) [8] have shown to be very
effective techniques for classification problems in general,
and for addressing imbalanced datasets in particular [9]. The
significance of employing a proper validation methodology for
the analysis of the results, takes a greater significance in this
case, due to the stochastic character of this type of approaches.
Regarding this fact, we aim to evaluate the robustness of
the DOB-SCV strategy using as case of study the FARC-
HD algorithm [10], a recent and accurate GFS classification
technique.

Our experimental framework includes a set of sixty-six real-
world problems from the KEEL dataset repository [11], [12]
(http://www.keel.es/dataset.php). We measure the performance
of the classifiers using the Area Under the Curve (AUC) metric
[13] as suggested in imbalanced domains. Additionally, we
study the significance of the results by the proper statistical
tests as suggested in the literature [14], [15].

In order to do so, this contribution is arranged as follows.



First, Section II briefly introduces the problem of imbalanced
data. Next, Section III contains the main concepts that are de-
veloped in this work, i.e. the basis on validation techniques and
the problem of covariate/dataset shift. Then, the experimental
framework is presented in Section IV, whereas all the analysis
of the results is shown along Section V. Finally, Section VI
summarizes and concludes the work.

II. IMBALANCED DATASETS IN CLASSIFICATION

In this section, we will first introduce the problem of
imbalanced datasets, describing its features and why is so
difficult to learn in this classification scenario. Then, we will
present how to address this problem, enumerating diverse
approaches that can be applied to ease the discrimination of
the positive and negative classes. Next, we will discuss how
to evaluate the performance of the results in this framework.
Finally, we will describe the GFS used in our experimental
study, the FARC-HD algorithm.

A. The problem of imbalanced datasets
The main property of this type of classification problem (in

a binary context) is that the examples of one class outnumber
the examples of the other one [1], [3]. The positive class is
usually the most important concept to be learnt, since it might
be associated with exceptional and significant cases [16] or
because the data acquisition of these examples is costly [17].
Since most of the standard learning algorithms consider a
balanced training set, this situation may cause the obtention of
suboptimal classification models, i.e. a good coverage of the
negative examples whereas the positive ones are misclassified
more frequently [2], [3].

Traditionally, the imbalance ratio (IR) [18] is the main hint
to identify a set of problems which need to be addressed in
a special way. Additionally, other data intrinsic characteristics
that are related to this concept may deteriorate even more the
final performance of the models. Some of them/data intrinsic
characteristics include the overlapping between classes [19],
lack of representative data [20], small disjuncts [21], [22],
dataset shift [23] and other issues which have interdependent
effects with data distribution (imbalance).

For standard learning algorithms, obtaining a good separa-
bility between the positive and negative classes is not straight-
forward [3]. As they aim at obtaining the highest accuracy,
this favors the covering of the negative class examples. Ad-
ditionally, positive instances can be treated as noise and thus
ignored by the classifier. These facts make imperative the use
of specific techniques designed for addressing classification
with imbalanced data.

B. Addressing the imbalanced problem: preprocessing and
cost-sensitive learning

A large number of approaches have been previously pro-
posed to deal with the class imbalance problem [24], which
can be categorised in three groups:

1) Data level solutions: these are external approaches that
modify the training set by oversampling the positive
examples or undersampling the negative ones [25]–[27].

2) Algorithmic level solutions: in this case the inner learn-
ing procedure of the algorithm is modified in order to
take into account the imbalance of the classes [28], [29].

3) Cost-sensitive solutions: these approaches aim at mini-
mizing the cost errors, usually considering a higher cost
for misclassifying the positive class examples [30], [31].

Among the aforementioned techniques, the application of
data level solutions is independent of the classifier used,
thus favoring the synergy with any classification algorithm.
Specifically, previous analysis suggested that oversampling
techniques work well in conjunction with fuzzy learning
approaches [9], [27].

The simplest approach, random oversampling, makes exact
copies of existing instances, and therefore several authors
agree that this method can increase the likelihood of occurring
overfitting [25]. According to the previous fact, more sophis-
ticated methods have been proposed based on the generation
of synthetic samples. Among them, the “Synthetic Minority
Over-sampling TEchnique” (SMOTE) [26], has become one
of the most significant approaches in this area.

The positive class is over-sampled by taking each minority
class sample and introducing synthetic examples along the line
segments joining any/all of the k minority class nearest neigh-
bors. Depending upon the amount of over-sampling required,
neighbors from the k nearest neighbors are randomly chosen.
This process is illustrated in Figure 1, where xi is the selected
point, xi1 to xi4 are some selected nearest neighbors and
r1 to r4 the synthetic data points created by the randomised
interpolation.
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Fig. 1. An illustration of how to create the synthetic data points in the SMOTE
algorithm

C. Evaluation in imbalanced domains

As stated in Section II-A, the use of the standard accuracy
rate is no longer valid, since it does not provide information
about the classification of both classes independently. Since in
this classification scenario we intend to achieve good quality
results for both classes, there is a necessity of obtaining one
way to combine the individual measures of both the positive
and negative classes, being none of these measures alone
adequate by itself.

The AUC [32] metric (1) is a widely used evaluation
criteria in imbalanced domains. It is computed over a Receiver
Operating Characteristic (ROC) graphic [33], which visualizes



the trade-off between the benefits (TPrate) and costs (FPrate)
(see Figure 2).

AUC =
1 + TPrate − FPrate

2
(1)
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Fig. 2. Example of an ROC plot. Two classifiers’ curves are depicted: the
dashed line represents a random classifier, whereas the solid line is a classifier
which is better than the random classifier.

D. Genetic Fuzzy Systems for Imbalanced Datasets: FARC-
HD

GFSs are one of the most popular hybridizations among the
Computational Intelligence areas. They are based on the com-
bination between fuzzy logic and genetic algorithms. The final
aim is to enhance the learning procedure of a fuzzy system
by the application of evolutionary computation techniques [8],
[34].

In this contribution, we will make use of a novel fuzzy
associative classification method named FARC-HD [10]. This
algorithm was shown to obtain very accurate results, and
therefore it will serve as a very robust approach for validating
our experimental results.

This algorithm extracts fuzzy association rules by limiting
the order of the associations. The former constraint is used
as a “preescrening” for high quality candidate rules during
learning, which allows the achievement of more interpretable
rules, i.e. a low number of rules with few antecedents. Finally,
a genetic rule selection and lateral tuning procedure is applied
for improving the classification accuracy of the final rule set.

Specifically, the FARC-HD model is composed of three
stages, as shown in Figure 3:

1) Extracting the fuzzy association rules for classification
by applying a search tree, whose depth of the branches
is limited.

2) Preselecting the most interesting rules using subgroup
discovery in order to decrease the computational cost of
the system.

3) Optimizing the knowledge base by means of a combi-
nation between the well known tuning of the lateral po-
sition of the membership functions and a rule selection
process.

III. CLASSIFIER EVALUATION TECHNIQUES AND THE
ISSUE OF DATASET SHIFT

As stated in the introduction of this work, the estimation
of the performance of a classifier, via partitioning in training
and test folds, is a necessary procedure in order to validate
the results for a given experiment. However, the conclusions
extracted from the experimental analysis, actually depend on
the specific procedure carried out for this task. We specifically
refer to the issue of dataset shift, i.e. the space distribution of
the instances in training and test may differ, thus leading to
“overfitting”.

In this section, we describe dataset shift in order to under-
stand the nature of the problem we are dealing with. Next,
we recall the standard and well-known SCV technique, and
we identify its handicap for classification with imbalanced
data. Finally, we present a recent methodology to alleviate
this situation by a better organisation of the instances among
the different folds.

A. Dataset shift

The problem of dataset shift [5] is defined as the case where
training and test data follow different distributions. There are
three potential types of dataset shift:

1) Prior Probability Shift: it refers to the differences in the
class distribution between training and test partitions. In
the most extreme case, the training set could not have
instances for a given class. This handicap is prevented
by applying a simple SCV scheme.

2) Covariate Shift: contrary to the previous case, now it is
the inputs of the problem which differ in training and
test sets. We focus on the impact of this type of shift
for classification problems with imbalanced data.

3) Concept Drift: this problem occurs when the relationship
between the input and class variables changes. This is
the most difficult issue to overcome, and it is usually
referred to as “Concept Drift”.

The dataset shift issue is specially relevant when dealing
with imbalanced classification because, in highly imbalanced
domains, the positive class is particularly sensitive to sin-
gular classification errors, due to the typically low number
of examples it presents [23]. In the most extreme cases, a
single misclassified example of the positive class can create a
significant drop in performance.

For clarity, Figures 4 and 5 present two examples of the
influence of dataset shift in imbalanced classification. In the
first case (Figure 4), it is easy to see a separation between
classes in the training set that carries over perfectly to the
test set. However, in the second case (Figure 5) it must be
noted how some positive class examples in test are at the
bottom and rightmost areas where there were not represented
in the training set, leading to a gap between the training and
test performance. These problems are represented in a two-
dimensional space by means of a linear transformation of the
inputs variables following the technique given in [23].



Fig. 3. Scheme of the FARC-HD method.

(a) Training data. AUC = .9043

(b) Test data. AUC = 1.000

Fig. 4. Example of good behavior (no dataset shift) in imbalanced domains:
ecoli4 dataset, 5th partition

B. Cross-validation for classifier evaluation: Distribution op-
timally balanced SCV

When aiming to analyze the generalization ability of a
classifier, a cross-validation technique must be employed. This
methodology divides a given dataset into two different subsets
with null intersection: a training set for learning the model, and
a test set for checking the output performance.

Cross-validation is often carried out into k-folds, i.e. the
original dataset is randomly partitioned into k subsamples.
From these new sets, one of them is used for test and the
remaining k − 1 sets are joined and used for training data.
This procedure is iterated k times, such as all k partitions will
be used for test. Finally, the output results for the k folds must
be averaged in order to give a single performance estimation.

How the instances of the dataset are placed into each fold
has a severe impact in the final performance estimation for the
validation stage. Traditionally, researchers in data mining have

(a) Training data. AUC = 1.000

(b) Test data. AUC = .8750

Fig. 5. Example of bad behavior caused by dataset shift in imbalanced
domains: ecoli4 dataset, 1st partition

used a simple SCV procedure, which distributes the instances
among folds regarding the class distribution. In this way, each
fold is intended to have the same number of examples per
class, thus avoiding prior probability shift.

However, it might induce covariate shift since it does not
take into account the distribution of the variables of the prob-
lem. According to this fact, we consider a more sophisticated
technique, known as DOB-SCV [7], which aims at preventing
both the prior probability and covariate shift issues. The
idea behind this procedure is quite simple: assigning close-by
examples to different folds, so that representative examples for
the different regions of the problem will be represented among
them.

The pseudo-code for the DOB-SCV technique is depicted
in Algorithm 1. For each class of the problem, it picks an
unassigned example. Next, it finds its k−1 nearest unassigned
neighbors of the same class, and then it places all of them to



a different fold. This process is iterated for each class.

Algorithm 1 DOB-SCV Partitioning Method
for each class cj ∈ C do

while count(cj) > 0 do
e0 ← randomly select an example of class cj from D
ei ← ith closest example to e0 of class cj from D (i = 1, . . . , k − 1)
Fi ← Fi

⋃
ei(i = 0, . . . , k − 1)

D ← D \ ei(i = 0, . . . , k − 1)
end while

end for

IV. EXPERIMENTAL FRAMEWORK

In this section we first provide details of the real-world
binary-class imbalanced problems chosen for the experiments
(subsection IV-A). Then, we will give the configuration pa-
rameters for the methods employed in the experimental study
(subsection IV-B). Finally, we present the statistical tests
applied to compare the obtained results (subsection IV-C).

A. Benchmark data

Table I shows the selected imbalanced datasets for our
experimental study where we can observe, by columns, the
name of the dataset, its size, number of attributes, which
class(es) are considered as negative and positive ones, their
percentage and the IR. According to our previous work on
the topic [27] we have set a threshold for considering a
dataset to be imbalanced when the ratio between the negative
and positive instances is higher than 1.5, i.e. a class 60:40
distribution.

As pointed out along this paper, the estimates of the AUC
measure are obtained by means of a standard SCV and the
DOB-SCV. The number of folds selected in both cases is
5. This value is set up with the aim of having enough
positive class instances in the different folds, hence avoiding
additional problems in the data distribution, especially for
highly imbalanced datasets.

Furthermore, results of this contribution can be reproduced
by downloading the original dataset partitions with SCV at the
KEEL dataset repository [12].

B. Parameters

In the case of the FARC-HD classifier, we have used the
values suggested by the authors in [10]:
• Fuzzy Rule Based Classification System parameters:

– Conjunction operator: product t-norm.
– Rule weight: certainty factor.
– Fuzzy reasoning method: additive combination [35].
– Number of linguistic labels per variable: 5 labels

• Inner learning parameters:
– Minimum Support = 0.05,
– Minimum Confidence = 0.8,
– Depth of the trees (Depthmax) = 3,
– Parameter K of the prescreening = 2.

• Genetic tuning with rule selection process:
– Maximum number of evaluations = 20000,

TABLE I
SUMMARY DESCRIPTION OF THE IMBALANCED DATASETS USED IN THE

EXPERIMENTAL STUDY.

Datasets #Ex. #Atts. Class (-;+) %Class(-, +) IR

Glass1 214 9 (build-win-non float-proc; (35.51, 64.49) 1.82
remainder)

Ecoli0vs1 220 7 (im; cp) (35.00, 65.00) 1.86
Wisconsin 683 9 (malignant; benign) (35.00, 65.00) 1.86
Pima 768 8 (tested-positive; tested-negative) (34.84, 66.16) 1.90
Iris0 150 4 (Iris-Setosa; remainder) (33.33, 66.67) 2.00
Glass0 214 9 (build-win-float-proc; remainder) (32.71, 67.29) 2.06
Yeast1 1484 8 (nuc; remainder) (28.91, 71.09) 2.46
Vehicle1 846 18 (Saab; remainder) (28.37, 71.63) 2.52
Vehicle2 846 18 (Bus; remainder) (28.37, 71.63) 2.52
Vehicle3 846 18 (Opel; remainder) (28.37, 71.63) 2.52
Haberman 306 3 (Die; Survive) (27.42, 73.58) 2.68
Glass0123vs456 214 9 (non-window glass; remainder) (23.83, 76.17) 3.19
Vehicle0 846 18 (Van; remainder) (23.64, 76.36) 3.23
Ecoli1 336 7 (im; remainder) (22.92, 77.08) 3.36
New-thyroid2 215 5 (hypo; remainder) (16.89, 83.11) 4.92
New-thyroid1 215 5 (hyper; remainder) (16.28, 83.72) 5.14
Ecoli2 336 7 (pp; remainder) (15.48, 84.52) 5.46
Segment0 2308 19 (brickface; remainder) (14.26, 85.74) 6.01
Glass6 214 9 (headlamps; remainder) (13.55, 86.45) 6.38
Yeast3 1484 8 (me3; remainder) (10.98, 89.02) 8.11
Ecoli3 336 7 (imU; remainder) (10.88, 89.12) 8.19
Page-blocks0 5472 10 (remainder; text) (10.23, 89.77) 8.77
Ecoli034vs5 200 7 (p,imL,imU; om) (10.00, 90.00) 9.00
Yeast2vs4 514 8 (cyt; me2) (9.92, 90.08) 9.08
Ecoli067vs35 222 7 (cp,omL,pp; imL,om) (9.91, 90.09) 9.09
Ecoli0234vs5 202 7 (cp,imS,imL,imU; om) (9.90, 90.10) 9.10
Glass015vs2 172 9 (build-win-non float-proc, (9.88, 90.12) 9.12

tableware, build-win-float-proc;
ve-win-float-proc)

Yeast0359vs78 506 8 (mit,me1,me3,erl; vac,pox) (9.88, 90.12) 9.12
Yeast02579vs368 1004 8 (mit,cyt,me3,vac,erl; me1,exc,pox) (9.86, 90.14) 9.14
Yeast0256vs3789 1004 8 (mit,cyt,me3,exc; me1,vac,pox,erl) (9.86, 90.14) 9.14
Ecoli046vs5 203 6 (cp,imU,omL; om) (9.85, 90.15) 9.15
Ecoli01vs235 244 7 (cp,im; imS,imL,om) (9.83, 90.17) 9.17
Ecoli0267vs35 224 7 (cp,imS,omL,pp; imL,om) (9.82, 90.18) 9.18
Glass04vs5 92 9 (build-win-float-proc,containers; (9.78, 90.22) 9.22

tableware)
Ecoli0346vs5 205 7 (cp,imL,imU,omL; om) (9.76, 90.24) 9.25
Ecoli0347vs56 257 7 (cp,imL,imU,pp; om,omL) (9.73, 90.27) 9.28
Yeast05679vs4 528 8 (me2; mit,me3,exc,vac,erl) (9.66, 90.34) 9.35
Ecoli067vs5 220 6 (cp,omL,pp; om) (9.09, 90.91) 10.00
Vowel0 988 13 (hid; remainder) (9.01, 90.99) 10.10
Glass016vs2 192 9 (ve-win-float-proc; (8.89, 91.11) 10.29

build-win-float-proc,
build-win-non float-proc,

headlamps)
Glass2 214 9 (Ve-win-float-proc; remainder) (8.78, 91.22) 10.39
Ecoli0147vs2356 336 7 (cp,im,imU,pp; imS,imL,om,omL) (8.63, 91.37) 10.59
Led7digit02456789vs1 443 7 (0,2,4,5,6,7,8,9; 1) (8.35, 91.65) 10.97
Glass06vs5 108 9 (build-win-float-proc,headlamps; (8.33, 91.67) 11.00

tableware)
Ecoli01vs5 240 6 (cp,im; om) (8.33, 91.67) 11.00
Glass0146vs2 205 9 (build-win-float-proc,containers, (8.29, 91.71) 11.06

headlamps,
build-win-non float-proc;

ve-win-float-proc)
Ecoli0147vs56 332 6 (cp,im,imU,pp; om,omL) (7.53, 92.47) 12.28
Cleveland0vs4 177 13 (0; 4) (7.34, 92.66) 12.62
Ecoli0146vs5 280 6 (cp,im,imU,omL; om) (7.14, 92.86) 13.00
Ecoli4 336 7 (om; remainder) (6.74, 93.26) 13.84
Yeast1vs7 459 8 (nuc; vac) (6.72, 93.28) 13.87
Shuttle0vs4 1829 9 (Rad Flow; Bypass) (6.72, 93.28) 13.87
Glass4 214 9 (containers; remainder) (6.07, 93.93) 15.47
Page-blocks13vs2 472 10 (graphic; horiz.line,picture) (5.93, 94.07) 15.85
Abalone9vs18 731 8 (18; 9) (5.65, 94.25) 16.68
Glass016vs5 184 9 (tableware; build-win-float-proc, (4.89, 95.11) 19.44

build-win-non float-proc,
headlamps)

Shuttle2vs4 129 9 (Fpv Open; Bypass) (4.65, 95.35) 20.5
Yeast1458vs7 693 8 (vac; nuc,me2,me3,pox) (4.33, 95.67) 22.10
Glass5 214 9 (tableware; remainder) (4.20, 95.80) 22.81
Yeast2vs8 482 8 (pox; cyt) (4.15, 95.85) 23.10
Yeast4 1484 8 (me2; remainder) (3.43, 96.57) 28.41
Yeast1289vs7 947 8 (vac; nuc,cyt,pox,erl) (3.17, 96.83) 30.56
Yeast5 1484 8 (me1; remainder) (2.96, 97.04) 32.78
Ecoli0137vs26 281 7 (pp,imL; cp,im,imU,imS) (2.49, 97.51) 39.15
Yeast6 1484 8 (exc; remainder) (2.49, 97.51) 39.15
Abalone19 4174 8 (19; remainder) (0.77, 99.23) 128.87

– Population size = 50,
– Parameter alpha = 0.02,
– Bits per gen = 30

Lastly, in the case of the SMOTE preprocessing technique,
we will consider the 5-nearest neighbors of the positive class
to generate the synthetic samples, and balancing both classes
to the 50% distribution.



C. Statistical tests for performance comparison

When developing any experimental study, it is strongly
recommended to contrast the conclusions extracted from the
results by means of statistical tests [14], [15]. These tests
provide the support necessary for gaining credibility in the
experimental analysis. However, the initial conditions that
guarantee the reliability of standard parametric tests (such as
the t-test) cannot always be fulfilled, leading to the use of
non-parametric tests instead.

In this contribution, we will apply pairwise comparisons
by means of a Wilcoxon signed-rank test [36], as the non-
parametric statistical procedure analogous to the standard t-
test. This test works by taking the differences in performance
between two classifiers and then ranking them according to
their absolute value, from the lowest to the highest one. Then,
R+ will be the sum of ranks for the datasets in which the first
algorithm outperformed the second one, and R− refers to the
contrary case. Then, the p-value for the statistical distribution
is computed and if it is below a specified level of significance
α the null hypothesis of equality of means can be rejected.

Any interested reader can find additional information about
the use of this and additional tests on the Website http://sci2s.
ugr.es/sicidm/.

V. EXPERIMENTAL ANALYSIS

This section is devoted to identify the possible differences
regarding the estimation of the performance with the standard
SCV and the suggested DOB-SCV for imbalanced datasets.

With this aim, Table II shows the average classification
values obtained by FARC-HD. In this table, three values are
given by rows: first the average AUC performance obtained in
the test partitions for the SCV technique, then the average per-
formance for DOB-SCV, and finally the relative difference (in
percentage) between both values, i.e. AUCDOB−SCV −AUCSCV

AUCSCV
.

This final value has the following mean: if the value is positive,
then the estimation of the performance for DOB-SCV is more
optimistic than SCV; if the value is negative it refers to
the contrary case; and the higher the obtained number, the
most significative the selection of the validation approach is.
Additionally, we show the detailed test results for all datasets
in Table III.

TABLE II
AVERAGE TEST RESULTS WITH AUC METRIC AND PERCENTAGE

DIFFERENCES FOR THE SCV AND DOB-SCV TECHNIQUES WITH
FARC-HD.

IR < 9 IR > 9 All
Algorithm AUCTr AUCTst AUCTr AUCTst AUCTr AUCTst

SCV 0.9270 0.8674 0.9479 0.8400 0.9409 0.8491
DOB-SCV 0.9255 0.8739 0.9473 0.8471 0.9400 0.8560
%Diff -0.1447 0.7617 -0.0511 0.8229 -0.0823 0.8026

From these tables of results we may observe that for FARC-
HD, the DOB-SCV validation technique achieves a higher
estimation of the performance for most datasets, therefore
being more robust for analysing the quality of the models
learned in imbalanced data.

TABLE III
DETAILED TEST RESULTS WITH AUC METRIC AND PERCENTAGE
DIFFERENCES FOR THE SCV AND DOB-SCV TECHNIQUES WITH

FARC-HD

SCV DOB-SCV % Diff.
Dataset IR AUCTr AUCTst AUCTr AUCTst Train Test
Glass1 1.82 .8869 .7424 .8688 .7411 -.0208 -.0018
Ecoli0vs1 1.86 .9903 .9663 .9903 .9649 .0000 -.0015
Wisconsin 1.86 .9862 .9640 .9852 .9693 -.0009 .0055
Pima 1.90 .8133 .7538 .8227 .7307 .0115 -.0316
Iris0 2.00 1.000 1.000 1.000 1.000 .0000 .0000
Glass0 2.06 .9183 .7706 .9095 .7851 -.0097 .0185
Yeast1 2.46 .7677 .7173 .7717 .7247 .0052 .0101
Vehicle1 2.52 .8424 .7521 .8250 .7351 -.0212 -.0230
Vehicle2 2.52 .9887 .9560 .9875 .9700 -.0013 .0144
Vehicle3 2.52 .8322 .7520 .8059 .7210 -.0326 -.0430
Haberman 2.68 .7328 .5914 .7682 .6501 .0461 .0903
Glass0123vs456 3.19 .9741 .9141 .9795 .9434 .0055 .0310
Vehicle0 3.23 .9613 .9266 .9569 .9333 -.0046 .0072
Ecoli1 3.36 .9470 .8836 .9494 .8936 .0025 .0113
New-thyroid2 4.92 .9986 .9460 .9972 .9575 -.0014 .0120
New-thyroid1 5.14 .9986 .9917 .9903 .9750 -.0084 -.0171
Ecoli2 5.46 .9632 .8947 .9651 .9019 .0019 .0080
Segment0 6.01 .9970 .9939 .9966 .9942 -.0004 .0003
Glass6 6.38 .9716 .9219 .9716 .9338 .0000 .0127
Yeast3 8.11 .9465 .9182 .9440 .9183 -.0026 .0001
Ecoli3 8.19 .9508 .8216 .9536 .8661 .0029 .0513
Page-blocks0 8.77 .9257 .9048 .9224 .9166 -.0036 .0128
Ecoli034vs5 9.00 .9924 .9167 .9972 .9278 .0049 .0120
Yeast2vs4 9.08 .9481 .8954 .9578 .9266 .0102 .0336
Ecoli067vs35 9.09 .9788 .8425 .9750 .8600 -.0038 .0203
Ecoli0234vs5 9.10 .9938 .9085 .9979 .9085 .0041 .0000
Glass015vs2 9.12 .9516 .7462 .9395 .7411 -.0129 -.0069
Yeast0359vs78 9.12 .8609 .7512 .8626 .7490 .0020 -.0029
Yeast02579vs368 9.14 .9272 .8912 .9243 .8918 -.0032 .0007
Yeast0256vs3789 9.14 .8366 .8015 .8330 .8020 -.0044 .0006
Ecoli046vs5 9.15 .9925 .8673 .9911 .9004 -.0014 .0368
Ecoli01vs235 9.17 .9754 .8718 .9794 .8836 .0041 .0134
Ecoli0267vs35 9.18 .9753 .8729 .9672 .8730 -.0083 .0001
Glass04vs5 9.22 .9970 .9761 .9879 .9143 -.0092 -.0676
Ecoli0346vs5 9.25 .9959 .9257 .9919 .9507 -.0041 .0263
Ecoli0347vs56 9.28 .9855 .9054 .9849 .9099 -.0006 .0049
Yeast05679vs4 9.35 .8799 .7651 .9014 .8078 .0239 .0529
Ecoli067vs5 10.00 .9813 .9050 .9737 .8575 -.0077 -.0554
Vowel0 10.10 1.000 .9656 .9989 .9844 -.0011 .0192
Glass016vs2 10.29 .8895 .6100 .8971 .5936 .0086 -.0277
Glass2 10.39 .9071 .5742 .9205 .7313 .0146 .2148
Ecoli0147vs2356 10.59 .9681 .8577 .9630 .8662 -.0054 .0097
Led7digit02456789vs1 10.97 .9284 .8971 .9204 .8261 -.0087 -.0860
Glass06vs5 11.00 1.000 .9800 .9962 .9550 -.0038 -.0262
Ecoli01vs5 11.00 .9938 .8886 .9955 .9045 .0017 .0176
Glass0146vs2 11.06 .9109 .6974 .9164 .6770 .0061 -.0301
Ecoli0147vs56 12.28 .9862 .8922 .9874 .9123 .0012 .0220
Cleveland0vs4 12.62 .9906 .8392 .9977 .8469 .0070 .0091
Ecoli0146vs5 13.00 .9913 .9192 .9923 .9269 .0010 .0083
Ecoli4 13.84 .9933 .9076 .9854 .8513 -.0080 -.0662
Yeast1vs7 13.87 .8896 .6866 .8918 .7118 .0024 .0354
Shuttle0vs4 13.87 1.000 .9997 1.000 .9994 .0000 -.0003
Glass4 15.47 .9944 .8658 .9844 .9036 -.0101 .0418
Page-blocks13vs4 15.85 .9975 .9555 .9820 .9363 -.0158 -.0205
Abalone9-18 16.68 .8660 .7896 .8468 .7665 -.0227 -.0302
Glass016vs5 19.44 .9864 .8186 .9857 .8514 -.0007 .0386
Shuttle2vs4 20.50 1.000 .9960 .9980 .9960 -.0020 .0000
Yeast1458vs7 22.10 .7988 .6506 .8194 .6452 .0252 -.0084
Glass5 22.81 .9957 .7232 .9915 .8780 -.0043 .1764
Yeast2vs8 23.10 .8682 .8153 .8868 .7947 .0209 -.0258
Yeast4 28.41 .9088 .8390 .9033 .7793 -.0061 -.0766
Yeast1289vs7 30.56 .8234 .6734 .8211 .6705 -.0029 -.0043
Yeast5 32.78 .9836 .9462 .9778 .9406 -.0059 -.0059
Ecoli0137vs26 39.15 .9831 .8136 .9868 .8262 .0037 .0153
Yeast6 39.15 .9169 .8316 .9156 .8812 -.0015 .0562
Abalone19 128.87 .8628 .6846 .8548 .7110 -.0094 .0370
Average .9409 .8491 .9400 .8560 -.0823 .8026

We can also stress that the degree of imbalance of the
dataset has some influence in the obtained results, i.e. the
higher the IR is, the greater the differences between the
DOB-SCV and the standard SCV. This issue can be due to
the fact that the lower the number of positive instances we
have in a dataset with respect to the negative ones, the more
significative is to maintain the data distribution to avoid the
gap in performance between training and test.

In order to give statistical support to the findings previously
extracted, in Table IV we carry out a Wilcoxon test to compare
both validation techniques with FARC-HD. From this test, we
may conclude the more optimistic estimation of DOB-SCV, as



stated by the higher sum of ranks and the low p-value obtained,
which tell us about the goodness of this approach.

TABLE IV
WILCOXON TEST TO COMPARE THE RESULTS WITH THE DOB-SCV

VERSUS THE STANDARD SCV. R+ CORRESPONDS TO THE SUM OF THE
RANKS FOR THE DOB-SCV PARTITIONING APPROACH AND R− TO THE

ORIGINAL SCV PARTITIONING

Comparison R+ R− Hypothesis p-value
FARC-HD[DOB-SCV] 1337.5 807.5 Rejected for 0.0827
vs FARC-HD[SCV] FARC-HD[DOB-SCV]

To summarize, we must stress that DOB-SCV is a suitable
methodology for contrasting the performance of the classifica-
tion algorithms in imbalanced data. When the distribution of
the classes is skewed, using standard estimation models may
lead to misleading conclusions on the quality of the prediction.
The proposed use of this model addresses the handicap of
losing the generalization ability because of the way data is
distributed among the different folds.

VI. CONCLUDING REMARKS

In this contribution, we have raised up the problem of
covariate shift in classification with imbalanced data. This
problem is referred to those situation in which the instances in
the training and test partitions follow a different distribution
in the data space, thus creating a handicap in the learning and
evaluation of those techniques applied in this scenario.

Specifically, taking into account the class distribution and
the performance metrics for this type of problem, we have
suggested the use of a novel partition-based methodology,
named as DOB-SCV, in order to overcome this situation. This
technique aims at carrying out an heterogeneous organization
of the instances of the classes among the different folds. This
validation technique turns up to be a suitable procedure in the
framework of imbalanced datasets.

The stable performance estimation of DOB-SCV has been
contrasted versus the classical k-fold SCV, detecting signif-
icant differences between both techniques for the FARC-
HD GFS classifier. The significance of using DOB-SCV in
this case of study has a two-fold view: on the one hand,
GFSs have a stochastic character, which makes the use of
robust validation techniques mandatory for extracting well
founded conclusions. On the other hand, avoiding different
data distribution inside each fold will allow researchers on
imbalanced data to concentrate their efforts on designing new
learning models based only on the skewed data, rather than
seeking for complex solutions when trying to overcome the
gaps between training and test results.
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[14] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,”
Journal of Machine Learning Research, vol. 7, pp. 1–30, 2006.

[15] S. Garcı́a and F. Herrera, “An extension on “statistical comparisons of
classifiers over multiple data sets” for all pairwise comparisons,” Journal
of Machine Learning Research, vol. 9, pp. 2607–2624, 2008.

[16] G. M. Weiss, “Mining with rarity: a unifying framework,” SIGKDD
Explorations, vol. 6, no. 1, pp. 7–19, 2004.

[17] G. M. Weiss and Y. Tian, “Maximizing classifier utility when there
are data acquisition and modeling costs,” Data Mining and Knowledge
Discovery, vol. 17, no. 2, pp. 253–282, 2008.

[18] A. Orriols-Puig and E. Bernadó-Mansilla, “Evolutionary rule–based
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